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Improved Graph Clustering
Yudong Chen, Sujay Sanghavi, Member, IEEE, and Huan Xu

Abstract

Graph clustering involves the task of partitioning nodes, so that the edge density is higher within partitions
as opposed to across partitions. A natural, classic and popular statistical setting for evaluating solutions to this
problem is the stochastic block model, also referred to as the planted partition model.

In this paper we present a new algorithm - a convexified version of Maximum Likelihood - for graph clustering.
We show that, in the classic stochastic block model setting, it outperforms all existing methods by polynomial
factors; in fact, it is within logarithmic factors of known lower bounds for spectral methods.

We then show that this guarantee carries over to a more general semi-random extension of the stochastic block
model; our method can handle settings of heterogeneous degree distributions, unequal cluster sizes, outlier nodes,
planted k-cliques etc.

I. INTRODUCTION

This paper proposes a new algorithm for the following task: given an undirected unweighted graph,
assign the nodes into disjoint clusters so that the density of edges within clusters is higher than the
edges across clusters. Clustering arises in applications such as a community detection, user profiling, link
prediction, collaborative filtering etc. In these applications, one is often given as input a set of similarity
relationships (either “1” or “0”) and the goal is to identify groups of similar objects. For example, given
the friendship relations on Facebook, one would like to detect tightly connected communities, which is
useful for subsequent tasks like customized recommendation and advertisement.

Graphs in modern applications have several characteristics that complicate graph clustering:
• Small density gap: the edge density across clusters is only a small additive or multiplicative factor

different from within clusters;
• Sparsity: the graph is overall very sparse even within clusters;
• Outliers: there may exist nodes that do not belong to any clusters and are loosely connected to the

rest of the graph;
• High dimensionality: the number of clusters may grow unbounded as a function of the number of

nodes n, which means the sizes of the clusters can be vanishingly small compared to n;
• Heterogeneity: the cluster sizes, node degrees and edge densities may be non-uniform; there may

even exist edges that are not well-modeled by probabilistic distributions as well as hierarchical cluster
structures.

Various large modern datasets and graphs have such characteristics [1, 2]; examples include the web
graph, social graphs of various social networks etc. As has been well-recognized, these characteristics
make clustering more difficult. When the difference between in-cluster and across-cluster edge densities
is small, the clustering structure is less significant and thus harder to detect. Sparsity further reduces the
amount of information and makes the problem noisier. In the high dimensional regime, there are many
small clusters, which are easy to lose in the noise. Heterogeneous and non-random structures in the graphs
foil many algorithms that otherwise perform well. Finally, the existence of hierarchy and outliers renders

The work of Y. Chen was supported by NSF grant EECS-1056028 and DTRA grant HDTRA 1-08-0029. The work of S. Sanghavi was
supported by NSF grant 1017525, an Army Research Office (ARO) grant W911NF-11-1-0265, and a DTRA Young Investigator award. The
work of H. Xu was partially supported by the Ministry of Education of Singapore through AcRF Tier Two grant R-265-000-443-112 and
NUS startup grant R-265-000-384-133.

Y. Chen and S. Sanghavi are with the Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX
78712 USA. H. Xu is with the Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore
117575, Singapore. (e-mail: ydchen@utexas.edu, sanghavi@mail.utexas.edu, mpexuh@nus.edu.sg)
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many existing algorithms and theoretical results inapplicable, as they fix the number of clusters a priori
and force each node to be assigned to a cluster. It is desirable to design an algorithm that can handle all
these issues in a principled manner.

A. Our Contributions
Our algorithmic contribution is a new method for unweighted graph clustering. It is motivated by the

maximum-likelihood estimator for the classical Stochastic Blockmodel [3] (a.k.a. the Planted Partition
Model [4]) for random clustered graphs. In particular, we show that this maximum-likelihood estimator
can be written as a linear objective over combinatorial constraints; our algorithm is a convex relaxation
of these constraints, yielding a convex program overall. While this is the motivation, it performs well –
both in theory and practice – in settings that are not just the standard stochastic blockmodel.

Our main analytical result in this paper is theoretical guarantees on its performance; we study it in a
semi-random generalized stochastic blockmodel. This model generalizes not only the standard stochastic
blockmodel and planted partition model, but many other classical planted models including the planted
k-clique model [5, 6], the planted coloring model [7, 8] and their semi-random variants [9, 10, 11]. Our
main result gives the condition (as a function of the in/cross-cluster edge densities p and q, density gap
|p−q|, cluster sizes K and numbers of inliers/outliers n1 and n2) under which our algorithm is guaranteed
to recover the ground-truth clustering. When p > q, the condition reads

p− q = Ω

(√
p(1− q)(n1 + n2)

K

)
;

here all the parameters are allowed to scale with n = n1 + n2, the total number of nodes. An analogue
result holds for p < q.

While the planted and stochastic block models have a rich literature, this single result shows that our
algorithm outperforms every existing method for the standard planted partition/k-clique/noisy-coloring
models, and matches them (up to at most logarithmic factors) in all other cases, in the sense that our
algorithm succeeds for a bigger range of the parameters. In fact, there is evidence indicating that we
are close to the boundary at which any polynomial-time algorithm can be expected to work. Moreover,
the proof for our main theorem is relatively simple, relying only on standard concentration results. Our
simulation study supports our theoretic finding, that the proposed method is effective in clustering noisy
graphs and outperforms existing methods.

The rest of the paper is organized as follows: Section I-B provides an overview of related work; Sec-
tion II presents our algorithm; Section III describes the Semi-Random Generalized Stochastic Blockmodel
(which is a generalization of the standard stochastic blockmodel, one that allows the modeling of the issues
mentioned above); Section IV presents the main results – a performance analysis of our algorithm for the
generalized stochastic blockmodel and a detailed comparison to the existing literature on this problem;
Section V provides simulation results; finally, the proof of our theoretic results is given in Sections VI
to IX.

B. Related Work
The general field of clustering, or even graph clustering, is too vast for a detailed survey here; we focus

on the most related threads, and therein too primarily on work which provides analytical guarantees on
the resulting algorithms.

Stochastic block models: Also called “planted models” [3, 4], these are perhaps the most natural
random clustered graph models. In the simplest or standard setting, nodes are partitioned into disjoint
equal-sized subsets (called the underlying clusters), and then edges are generated independently and at
random, with the probability p of an edge between two nodes in the same cluster higher than the probability
q when the two nodes are in different clusters. The algorithmic clustering task in this setting is to recover
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TABLE I
COMPARISON WITH LITERATURE FOR THE STANDARD STOCHASTIC BLOCKMODEL

Paper Cluster size K Density gap p− q Sparsity p

Boppana (1987) [15] n/2 Ω̃
(√

p
n

)a Ω̃
(
1
n

)
Jerrum et al. (1998) [16] n/2 Ω̃

(
1

n1/6−ε

)
Ω̃
(
n1/6−ε

)
Condon et al. (2001) [3] Θ (n) Ω̃

(
1

n1/2−ε

)
Ω̃
(
n1/2−ε

)
Carson et al. (2001) [17] n/2 Ω̃

(√
p
n

)
Ω̃
(
1
n

)
Feige et al. (2001) [10] n/2 Ω̃

(√
p
n

)
Ω̃
(
1
n

)
McSherry (2001) [5] Ω

(
n2/3

)
Ω̃

(√
pn2

K3

)
Ω̃
(
n2

K3

)
Bollobas (2004) [9] Θ (n) Ω̃

(√
q
n
∨ 1
n

)
Ω̃
(
1
n

)
Giesen et al. (2005) [18] Ω (

√
n) Ω̃

(√
n
K

)
Ω̃
(√

n
K

)
Shamir (2007) [19] Ω (

√
n logn) Ω̃

(√
n
K

)
Ω̃
(√

n
K

)
Coja-Oghlan (2010) [20] Ω(n4/5) Ω̃

(√
pn4

K5

)
Ω̃
(
n4

K5

)
Rohe et al. (2011) [21] Ω

(
(n logn)2/3

)
Ω̃
(
n1/2

K3/4

)
Ω̃
(

1√
logn

)
Oymak et al. (2011) [22] Ω (

√
n) Ω̃

(√
n
K

)
Ω̃
(√

n
K

)
Chaudhuri et al. (2012) [12] Ω

(√
n logn

)
Ω̃
(√

n
K

)
Ω̃
(√

n
K

)
Ames (2012) [23] Ω (

√
n) Ω̃

(√
n
K

)
Ω̃
(√

n
K

)
Our result Ω (

√
n) Ω̃

(√
pn

K

)
Ω̃
(
n
K2

)
To facilitate direct comparison, this table specializes some of the results to the case where every underlying partition (i.e. cluster) is of

the same size K, and the in/cross-cluster edge probabilities are uniformly p and q. Some of the algorithms above need this assumption, and
some – like ours – do not.

aThe soft Ω̃ (·) notation ignores log factors.

the underlying clusters given the graph. The parameters p, q and the size K of the smallest cluster typically
govern whether an algorithm can do this clustering, or not.

There is now a long line of analytical work on stochastic block models; we focus on methods that
allow for exact recovery (i.e. every node is correctly classified), and summarize the conditions required
by known methods in Table I. As can be seen, we improve over all existing methods by polynomial factors.
In addition, and as opposed to several of these methods, we can handle outliers, heterogeneity, hierarchy
in clustering etc. A complimentary line of work has investigated lower bounds in this setting; i.e., for
what values/scalings of p, q and K is it not possible (either for any algorithm, or for any polynomial time
algorithm) to recover the underlying clusters [12, 13, 14]. We discuss these two lines of work in more
details in the main results section.

Convex methods for matrix decomposition: Our method is related to recent literature on the recovery
of low-rank matrices using convex optimization, and in particular the recovery of such matrices from
“sparse” perturbations (i.e. where a fraction of the elements of the low-rank matrix are possibly arbitrarily
modified, while others are untouched). Sparse and low-rank matrix decomposition using convex optimiza-
tion was initiated by [24, 25]; follow-up works [26, 27] have the current state-of-the-art guarantees on
this problem, and [28] applies it directly to graph clustering.

The method in this paper is Maximum Likelihood, but it can also be viewed as a weighted version
of sparse and low-rank matrix decomposition, with different elements of the sparse part penalized dif-
ferently, based on the given input graph. There is currently no literature or analysis of weighted matrix
decomposition; in that sense, while our weights have a natural motivation in our setting, our results are
likely to have broader implications, for example robust versions of PCA when not all errors are created
equal, but have a corresponding prior.
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II. ALGORITHM

We now describe our algorithm; as mentioned, it is a convex relaxation of Maximum Likelihood (ML)
as applied to the standard stochastic blockmodel. So, in what follows, we first develop notation and the
exact ML estimator, and then its relaxation.

ML for the standard stochastic blockmodel: Recall that in the standard stochastic blockmodel nodes
are partitioned into disjoint clusters, and edges in the graph are chosen independently; the probability of
an edge between a pair of nodes in the same cluster is p, and for a pair of nodes in different clusters it
is q. Given the graph, the task is to find the underlying clusters that generated it. To write down the ML
estimator for this, let us represent any candidate partition by a corresponding cluster matrix Y ∈ Rn×n

where yij = 1 if and only if nodes i and j are in the same cluster, and 0 otherwise1. Any Y thus needs
to have a block-diagonal structure, with each block being all 1’s.

A vanilla ML estimator then involves optimizing a likelihood subject to the combinatorial constraint
that the search space is the cluster matrices. Let A ∈ Rn×n be the observed adjacency matrix of the
graph2; then, the log likelihood function of A given Y is

logP(A|Y ) = log
∏

(i,j):yij=1

paij(1− p)1−aij
∏

(i,j):yij=0

qaij(1− q)1−aij

We notice that this can be written, via a re-arrangement of terms, as

logP(A|Y ) = log

(
p

q

) ∑
aij=1

yij − log

(
1− q
1− p

) ∑
aij=0

yij + C; (1)

here C collects the terms that are independent of Y . ML estimator would be maximizing the above
expression subject to Y being a cluster matrix. While the objective is a linear function of Y , this
optimization problem is combinatorial due to the requirement that Y be a cluster matrix (i.e., block-
diagonal with each block being all-ones), and is intractable in general.

Our algorithm: We obtain a convex and tractable algorithm by replacing the constraint “Y is a cluster
matrix” with (i) constraints 0 ≤ yij ≤ 1 for all elements i, j, and (ii) a nuclear norm3 regularizer ‖Y ‖∗ in
the objective. The latter encourages Y to be low-rank, and is based on the well-established insight that a
cluster matrix has low rank – in particular, its rank equals to the number of clusters. (We discuss other
related relaxations after we present our algorithm.)

Also notice that the likelihood expression (1) is linear in Y and only the ratio of the two coefficients
log(p/q) and log((1 − q)/(1 − p)) is important. We thus introduce a parameter t which allows us to
choose any ratio. This has the advantage that instead of knowing both p and q, we only need to choose
one number t (which should be between p and q; we remark on how to choose t later). This leads to the
following convex formulation:

max
Y ∈Rn×n

cA
∑
aij=1

yij − cAc
∑
aij=0

yij − 48
√
n ‖Y ‖∗ (2)

s.t. 0 ≤ yij ≤ 1,∀i, j. (3)

where the weights cA and cAc are given by

cA =

√
1− t
t

and cAc =

√
t

1− t
. (4)

Here the factor 48
√
n balances the contributions of the nuclear norm and the likelihood, and the specific

forms of cA and cAc are derived from our analysis. The optimization problem (2)–(3) is convex and can

1We adopt the convention that yii = 1 for any node i that belongs to a cluster.
2We assume aii = 1 for all i.
3The nuclear norm of a matrix is the sum of its singular values.
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be cast as a Semidefinite Program (SDP) [24, 29]. More importantly, it can be solved using efficient
first-order methods for large graphs (see Section V-A).

Our algorithm is given as Algorithm 1. Depending on the given A and the choice of t, the optimal
solution Ŷ may or may not be a cluster matrix. Checking if a given Ŷ is a cluster matrix can be done
easily, e.g., via an SVD, which will also reveal cluster memberships if it is a cluster matrix. If it is not,
any one of several rounding/aggregation ideas (e.g., the one in [30]) can be used empirically; we do not
delve into this approach in this paper, and simply output failure. In Section IV we provides sufficient
conditions under which Ŷ is a cluster matrix, with no rounding required.

Algorithm 1 Convex Clustering
Input: A ∈ Rn×n, t ∈ (0, 1)
Solve program (2)–(3) with weights (4). Let Ŷ be an optimal solution.
if Ŷ is a cluster matrix then

Output cluster memberships obtained from Ŷ .
else

Output “Failure”.
end if

A. Remarks about the Algorithm
Note that while we derive our algorithm from the standard stochastic blockmodel, our analytical results

hold in a much more general setting. In practice, one could execute the algorithm (with appropriate choice
of t, and hence cA and cAc) on any given graph.

Tighter relaxations: The formulation (2)–(3) is not the only way to relax the non-convex ML estimator.
Instead of the nuclear norm regularizer, a hard constraint ‖Y ‖∗ ≤ n may be used. One may further replace
this constraint with the positive semidefinite constraint Y � 0 and the linear constraints yii = 1, both
satisfied by any cluster matrix4. It is not hard to check that these modifications lead to convex relaxations
with smaller feasible sets, so any performance guarantee for our formulation (2)–(3) also applies to these
alternative formulations. We choose not to use these potentially tighter relaxations based on the following
theoretical and practical considerations: a) These formulations do not work well when the numbers of
outliers and clusters are unknown. b) We do not obtain better theoretical guarantees with them. In fact,
the work [30] considers these tighter constraints but their exact recovery guarantees are improved by ours.
Moreover, as we argue in the next section, our guarantees are likely to be order-wise optimal and thus
any alternative convex formulations are unlikely provide significant improvements in a scaling sense. c)
Our simpler formulation facilitates efficient solution for large graphs via first-order methods; we describe
one such method in Section V-A.

Choice of t: Our algorithm requires an extraneous input t. For the standard planted r-clique problem [6,
5] (with r cliques planted in a random graph Gn,1/2), one can use t = 3/4 (see Section IV-C2). For the
standard stochastic blockmodel (with nodes partitioned into equal-size clusters and edge probabilities
being uniformly p and q inside and across clusters), the value of t can be easily computed from data (see
Section IV-D). In these cases, our algorithm has no tuning parameters whatsoever and does not require
knowledge of the number or sizes of the clusters. For the general setting, t should be chosen to lie between
p and q, which now represent the lower/upper bounds for the in/cross-cluster edge densities. As such,
t can be interpreted as the resolution of the clustering algorithm. To see this, suppose the clusters have
a hierarchical structure, where each big cluster is partitioned into smaller sub-clusters with higher edge
densities inside. In this case, it is a priori not clear that which level of clusters, the larger ones or the
smaller ones, should be recovered. This ambiguity is resolved by specifying t: our algorithm recovers

4 The constraints yii = 1,∀i are satisfied when there is no outlier.
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those clusters with in-cluster edge density higher than t and cross-cluster density lower than t. With a
larger t, the algorithm operates at a higher resolution and detects small clusters with high density. By
varying t, our algorithm can be turned into a method for multi-resolution clustering [1] which explores
all levels of the cluster hierarchy. We leave this to future work. Importantly, the above example shows
that it is generally impossible to uniquely determine the value of t from data.

III. THE GENERALIZED STOCHASTIC BLOCKMODEL

While our algorithm above is derived as a relaxation of ML for the standard stochastic blockmodel,
we establish performance guarantees in a much more general setting, which is defined by six parameters
n1, n2, r, K, p and q; it is described below.

Definition 1 (Generalized Stochastic Blockmodel (GSBM)). If p > q (p < q, resp.), consider a random
graph generated as follows: The n = n1 + n2 nodes are divided into two sets V1 and V2. The n1 nodes
in V1 are further partitioned into r disjoint sets, which we will refer to as the “true” clusters. Let K be
the minimum size of a true cluster. For every pair of nodes i, j that belong to the same true cluster, edge
(i, j) is present in the graph with probability that is at least (at most, resp.) p, while for every pair where
the nodes are in different clusters the edge is present with probability at most (at least, resp.) q. The other
n2 nodes in V2 are not in any cluster (we will call them outliers); for each i ∈ V2 and j ∈ V1 ∪ V2, there
is an edge between the pair i, j with probability at most (at least, resp.) q.

Definition 2 (Semi-random GSBM). On a graph generated from GSBM with p > q (p < q, resp.), an
adversary is allowed to arbitrarily (a) add (remove, resp.) edges between nodes in the same true cluster,
and (b) remove (add, resp.) edges between pairs of nodes if they are in different clusters, or if at least
one of them is an outlier in V2.

The objective is to find the underlying true clusters, given the graph generated from the semi-random
GSBM.

The standard stochastic blockmodel/planted partition model is a special case of GSBM with n2 = 0, r ≥
2, all cluster sizes equal to K, and all in-cluster (cross-cluster, resp.) probabilities equal to p (q, resp.).
GSBM generalizes the standard models as it allows for heterogeneity in the graph:
• p and q are lower and upper bounds, instead of exact edge probabilities;
• K is also a lower bound, so clusters can have different sizes;
• outliers (nodes not in any cluster) are allowed.

GSBM removes many restrictions in standard planted models and thus better models practical graphs.
The semi-random GSBM allows for further modeling power. It blends the worst case models, which

are often overly pessimistic,5 and the purely random graphs, which are extremely unstructured and have
very special properties usually not possessed by real-world graphs [31]. This semi-random framework
has been used and studied extensively in the computer science literature as a better model for real-world
networks [9, 10, 11]. At first glance, the adversary seems to make the problem easier by adding in-cluster
edges and removing cross-cluster edges when p > q. This is not necessarily the case. The adversary can
significantly change some statistical properties of the random graph (e.g., alter spectral structure and node
degrees, and create local optima by adding dense spots [10]), and foil algorithms that over-exploit such
properties. In fact, some spectral algorithms that work extremely well on random models are shown to
fail in the semi-random setting [8]. An algorithm that is robust against an adversary is more likely to
work well on real-world graphs. As is shown later, our algorithm processes this desired property.

A. Special Cases
GSBM recovers as special cases many classical and widely studied models for clustered graphs, by

considering different values for the parameters n1, n2, r, K, p and q. We classify these models into two
categories based on the relation between p and q.

5For example, the minimum graph bisection problem is NP-hard.
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1) p > q: GSBM with p > q models homophily, the tendency that individuals belonging to the same
community tend to connect more than those in different communities. Special cases include:
• Planted Clique [32]: p = 1, r = 1 (so n1 = K) and n2 > 0;
• Planted r-Clique [5]: p = 1 and r ≥ 1;
• Stochastic Blockmodel/Planted Partition [4, 3]: n2 = 0, r ≥ 2 with all cluster sizes equal to K.

2) p < q: GSBM with p < q models heterophily. Special cases include:
• Planted Coloring [10]: q > p = 0, r ≥ 2, and n2 = 0;
• Planted r-Cut/noisy coloring [9, 13]: q > p ≥ 0, r ≥ 2, and n2 = 0.

In the next two sections, we describe our algorithm and provide performance guarantees under the semi-
random GSBM. This implies guarantees for all the special cases above. We provide a detailed comparison
with literature after presenting our results.

IV. MAIN RESULTS: PERFORMANCE GUARANTEES

In this section we provide analytical performance guarantees for our algorithm under the semi-random
GSBM. We provide a unified theorem, and then discuss its consequences for various special cases, and
compare with literature. We also discuss how to estimate the parameter t in the special case of the standard
stochastic blockmodel. We shall first consider the case with p > q. The p < q case is a direct consequence
and is discussed in Section IV-C3. All proofs are postponed to Sections VI to IX.

A. A Monotone Lemma
Our optimization-based algorithm has a nice monotone property: adding/removing edges “aligned with”

the optimal Ŷ (as is done by the adversary) cannot result in a different optimum. This is summarized in
the following lemma.

Lemma 1. Suppose p > q and Ŷ is the unique optimum of (2)–(3) for a given A. If now we arbitrarily
change some edges of A to obtain Ã, by (a) choosing some edges such that ŷij = 1 but aij = 0, and
making ãij = 1, and (b) choosing some edges where ŷij = 0 but aij = 1, and making ãij = 0. Then, Ŷ
is also the unique optimum of (2)–(3) with Ã as the input.

The lemma shows that our algorithm is inherently robust under the semi-random model. In particular,
the algorithm succeeds in recovering the true clusters on the semi-random GSBM as long as it succeeds
on GSBM with the same parameters. In the sequel, we therefore focus solely on GSBM, with the
understanding that any guarantee for it immediately implies a guarantee for the semi-random variant.

B. Main Theorem
Let Y ∗ be the matrix corresponding to the true clusters in GSBM, i.e., y∗ij = 1 if and only if i, j ∈ V1

and they are in the same true cluster, and 0 otherwise. The theorem below establishes conditions under
which our algorithm, specifically the convex program (2)–(3), yields this Y ∗ as the unique optimum
(without any further need for rounding etc.) with high probability (w.h.p.). Throughout the paper, with
high probability means with probability at least 1− c0n

−8 for some universal absolute constant c0.

Theorem 1. Suppose the graph A is generated according to GSBM with p > q. If t in (4) is chosen to
satisfy

1

4
p+

3

4
q ≤ t ≤ 3

4
p+

1

4
q, (5)

then Y ∗ is the unique optimal solution to the convex program (2)–(3) w.h.p. provided

p− q√
p(1− q)

≥ c1 max

{√
n

K
,
log2 n√
K

}
, (6)
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where c1 is an absolute constant independent of p, q,K and n.

Our theorem quantifies the tradeoff between the four parameters governing the hardness of GSBM– the
minimum in-cluster edge density p, the maximum across-cluster edge density q, the minimum cluster size
K and the number of outliers n2 = n − n1 – required for our algorithm to succeed, i.e., to recover the
underlying true clustering without any error. Note that we can handle any values of p, q, n2 and K as long
as they satisfy the condition in the theorem; in particular, they are allowed to scale with n. Interestingly,
the theorem does not have an explicit dependence on the number of clusters r except via the relation
rK ≤ n.

We now discuss the tightness of Theorem 1 in terms of these parameters. When K = Θ(n), we have
a matching converse result.

Theorem 2. Suppose all clusters have equal size K, and the in-cluster (cross-cluster, resp.) edge prob-
abilities are uniformly p (q, resp.), with K = Θ(n) and n2 = Θ(n1). Under GSBM with p > q and n
sufficiently large, for any algorithm to correctly recover the clusters with probability at least 3

4
, we must

have
p− q√
p(1− q)

≥ c2
1√
n
,

c2 is an absolute constant.

This theorem gives a necessary condition for any algorithm to succeed regardless of its computational
complexity. It shows that Theorem 1 is optimal up to logarithmic factors for all values of p and q when
K = Θ(n).

For smaller values of K, notice that Theorem 1 requires K to be Ω(
√
n), since the left hand side of

(6) is less than 1. This lower-bound is achieved when p and q are both constants independent of n and
K. There are reasons to believe that this requirement is unlikely to be improvable using polynomial-time
algorithms. Indeed, the special case with p = 1 and q = 1

2
corresponds to the classical planted clique

problem [32]; finding a clique of size K = o(
√
n) is widely believed to be computationally hard even on

average and has been used as a hard problem for cryptographic applications [33, 34].
For other values of p and q, no general and rigorous converse result exists. However, there are evidences

suggesting that no other polynomial-time algorithm is likely to have better guarantees than our result (6).
The authors of [13] show, using non-rigorous but deep arguments from statistical physics, that recovering
the clustering is impossible in polynomial time if p−q√

p
= o

(√
n
K

)
. Moreover, the work in [14] shows that

a large class of spectral algorithms fail under the same condition. In view of these results, it is possible
that our algorithm is optimal w.r.t. all polynomial-time algorithms for all values of p, q and K.

Several further remarks regarding Theorem 1 are in order.
• A nice feature of our result is that we only need p− q to be large only as compared to

√
p; several

other existing results (see Table I) require a lower bound (as a function of n and K) on p− q itself.
When K is Θ(n), we allow p and p− q to be as small as Θ

(
log4(n)/n

)
.

• The number of clusters r is allowed to grow rapidly with n; this is called the high-dimensional
setting [21]. In particular, our algorithm can recover as many as r = Θ(

√
n) equal size clusters. Any

algorithm with a better scaling would recover cliques of size o(
√
n), an unlikely task in polynomial

time in light of the hardness of the planted clique problem discussed above.
• The number of outliers can also be large, as many as n2 = Θ(n) = Θ(n2

1), which is attained when
p− q, r are Θ(1) and K = Θ(

√
n2). In other words, almost all the nodes can be outliers, and this is

true even when there are multiple clusters that are not cliques (i.e., p < 1).
• Not all existing methods can handle non-uniform edge probabilities and node degrees, which often

require special treatment (see [12]). This issue is addressed seamlessly by our method by definition
of GSBM.
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In the following sub-section, we discuss various planted problems to which Theorem 1 applies and
compare with existing work. Our results match the best existing results in all cases (up to logarithm
factors), and in many important settings lead to order-wise stronger guarantees.

C. Consequences and Comparison with Literature
1) Standard Stochastic Blockmodel (a.k.a. Planted Partition Model): This model assumes that all

clusters have the same size K with no isolated nodes (n2 = 0), and the in-cluster and across-cluster edge
probabilities are uniformly p and q, respectively, with p > q. We compare our result to past approaches
and theoretical results in Table I. Our result has the scaling p − q = Ω

(√
pn

K

)
and p = Ω

(
n
K2

)
, which

improves on all existing results by polynomial factors. This means that we can handle much noisier
and sparser graphs, especially when the number of clusters r = n/K is growing. A recent paper [35],
which appeared after the publication of the conference version [36] of this manuscript, proposes a tensor
approach for graph clustering. Our guarantee is a few logarithmic factors better than their results applied
to the standard stochastic blockmodel.

2) Planted r-Clique Problem: Here the task is to find a set of r disjoint cliques, each of size at least
K, that have been planted in an Erdos-Renyi random graphs G(n, q). Setting p = 1 in Theorem 1, we
obtain the following guarantee for the planted r-clique problem.

Corollary 1. For the planted r-clique problem, the formulation (2)-(4) with t chosen according to
Theorem 1 finds the hidden cliques w.h.p. provided

1− q ≥ c3 max

{
n

K2
,
log4 n

K

}
,

where c3 is an absolute constant.

In the regime where r is allowed to scale with n and q bounded away from zero, the best previous
results are given in [5] (1− q = Ω( rn

K2 )) and in [23] (1− q = Ω(
√
n
K

)). Corollary 1 is stronger than both
of them for large r.

3) The Heterophily Case (p < q): Given a graph A generated from the semi-random GSBM with
intra/inter-cluster densities p < q, we can run our algorithm to the graph A′ = 11>−A, where 11> is the
all-one matrix. Note that A′ can be considered as generated from GSBM with intra/inter-cluster densities
p′ = 1 − p and q′ = 1 − q, where p′ > q′. With this reduction, Lemma 1 and Theorem 1 immediately
yield the following guarantee.

Corollary 2. Under the semi-random GSBM with p < q, the formulation (2)-(4) applied to 11>−A with
t obeying

3

4
p+

1

4
q ≤ 1− t ≤ 1

4
p+

3

4
q

finds the true clustering w.h.p. provided

q − p ≥ c3

√
(1− p)qmax

{√
n

K
,
log2 n√
K

}
,

where c3 is an absolute constant.

This corollary immediately yields guarantees for the planted coloring problem [7] and the planted r-
cut [9] (a.k.a. planted noisy coloring [13]) problem. We are not aware of any exiting work that explicitly
considers the mirrored GSBM in its general form (n2 > 0, 1 ≥ q > p ≥ 0, and K = O(n) with potential
non-random edges). However, since any guarantee for GSBM with p > q implies a guarantee for GSBM
with p < q, Table I provides a comparison with existing work when n2 = 0 and the edge probabilities
and cluster sizes are uniform. Again our guarantee outperforms all existing ones.
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4) Planted Coloring Problems: A special case of the above problem is the planted coloring problem,
where p = 0 and n2 = 0. The best existing result q = Ω

(
n
K2 ∨ logn

K

)
is given by various algorithms

(e.g., [7, 8]). By Corollary 2, our algorithm succeeds provided q = Ω
(

n
K2 ∨ log4 n

K

)
. We match the best

existing algorithms for K = O(n/ log4(n)), and are off by a few log factors for larger K.

D. Estimating t in Special Cases
We have argued that specifying t in a completely data-driven way is ill-posed for the general GSBM,

e.g., when the clusters are hierarchical. However, for special cases this can be done reliably with strong
guarantees. Consider the standard stochastic blockmodel, where all clusters have the same size K, the
edge probabilities are uniform (i.e., equal to p within clusters and q across clusters, with p > q), and there
are no outliers (n2 = 0) or non-random edges. Observe that E [A]− (1− p)I is a matrix with blocks of
p and q’s6, which is equal to the Kronecker product of a K ×K all-one matrix and an r × r circulant
matrix with entries equal to p on the diagonal and q elsewhere. The all-one matrix has one non-zero
eigenvalue K, and the circulant matrix has eigenvalues (p− q) + rq and p− q with multiplicities 1 and
r − 1, respectively. The eigenvalues of E [A] − (1 − p)I is the product of these two matrices. It follows
that the first eigenvalue of E [A] is K(p− q) + nq + (1− p) with multiplicity 1, the second eigenvalue is
K(p−q)+(1−p) with multiplicity n

K
−1, and the third eigenvalue is 1−p with multiplicities (n− n

K
) [18].

This motivates us to use the eigenvalues of the observed matrix A to estimate p, q and t; see Algorithm 2.

Algorithm 2 Estimation of t from data

1) Compute and sort the eigenvalues of A, denoted as λ̂1 > λ̂2 > . . . > λ̂n.
2) Let r̂ = arg maxi=2,...,n−1(λ̂i − λ̂i+1). Set K̂ = n/r̂.
3) Set {

p̂ = K̂λ̂1+(n−K̂)λ̂2−n
n(K̂−1)

,

q̂ = λ̂1−λ̂2
n

.

4) Set t = p̂+q̂
2

.

The following theorem guarantees that the estimation errors are small.

Theorem 3. Under the standard stochastic blockmodel and the condition (6) in Theorem 1, the parameters
estimated in Algorithm 2 satisfy the following with high probability, where c4 is an absolute positive
constant:

K̂ =K,

max {|p̂− p| , |q̂ − q|} ≤c4

√
p(1− q)n
K

,

1

4
p+

3

4
q ≤ t ≤ 3

4
p+

1

4
q.

In particular, the estimated t satisfies the condition (5) in Theorem 1. The above theorem also ensures
that Algorithm 2 is a consistent estimator of the parameters p and q when condition (6) is satisfied, a
result of independent interest. Combining Theorem 1 and Theorem 3, we obtain a complete algorithm
that is guaranteed to find the clusters under the standard stochastic blockmodel obeying condition (6),
without knowledge of any generative parameters of the underlying model.

6Recall that we use the convention aii = 1.
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V. EMPIRICAL RESULTS

A. Implementation Issues
The convex program (2)–(3) can be solved using a general purpose SDP solver, but this method does

not scale well to problems with more than a few hundred nodes. To facilitate fast and efficient solution, we
propose to use a family of first-order algorithms called Augmented Lagrange Multiplier (ALM) methods.
Note that the program (2)–(3) can be rewritten as

min
Y,S∈Rn×n

λ‖C ◦ S‖1 + ‖Y ‖∗ (7)

s.t Y + S = A,

0 ≤ yij ≤ 1,∀i, j,

where λ := 1
48
√
n

, the matrix C ∈ Rn×n satisfies cij = cA if aij = 1 and cij = cAc otherwise, and
◦ denotes the element-wise matrix product. This problem can be recognized as a generalization of the
standard convex formulation of the low-rank and sparse matrix decomposition problem [25, 24], of which
the numerical solution has been well studied. We adapt the ALM method in [37] to the above problem,
given in Algorithm 3. Here SεC(·) : Rn×n 7→ Rn×n is the element-wise weighted soft-thresholding operator,

Algorithm 3 ALM for Minimizing Nuclear Norm plus Weighted `1 Norm
Input: A,C ∈ Rn×n.
Initialize: M (0) = 0; Y (0) = 0;S(0) = 0; µ0 > 0; α > 1; k = 0, λ = 1

48
√
n

.
while not converge do

(U,Σ, V ) = svd(A− S(k) + µ−1
k M (k)).

Ȳ (k+1) = USµ−1
k

(Σ)V .

For all (i, j), y(k+1)
ij = max

{
min

{
Ȳ

(k+1)
ij , 1

}
, 0
}

.

S(k+1) = Sµ−2
k λC(A− Y (k+1) + µ−1

k M (k)).
M (k+1) = M (k) + µk(A− Y (k+1) − S(k+1)).
µk+1 = αµk, k = k + 1.

end while
Return Y (k+1), S(k+1).

defined as

(SεC(X))ij =


xij − εcij, if xij > εcij
xij + εcij, if xij < −εcij
0, otherwise.

In other words, it shrinks each entry of X towards zero by εcij . The unweighted version Sε(·) , SεI(·)
is also used. The stopping criteria and parameters of the algorithm are chosen similarly to [37].

B. Simulations
We perform experiments on synthetic data, and compare with other methods. We generate a graph using

the stochastic blockmodel with n = 1000 nodes, r = 5 clusters with equal size K = 200, and p, q ∈ [0, 1].
We apply our method to the graph, where we pick t using Algorithm 2 and solve the optimization problem
using Algorithm 3. Due to numerical accuracy, the output Ŷ of our algorithm may not be strictly integer,
so we do the following simple rounding: compute the mean ȳ of the entries of Ŷ , and round each entry
of Ŷ to 1 if it is greater than ȳ, and 0 otherwise. We measure the error by ‖Y ∗ − round(Ŷ )‖1, which
equals the number of misclassified pairs. We say our method succeeds if it misclassifies less than 0.1%
of the pairs.
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Fig. 1. (a) Comparison of our method with Single-Linkage clustering (SLINK), spectral clustering, and low-rank-plus-sparse (L+S) approach.
The area above each curve is the values of (p, q) for which a method successfully recovers the underlying true clusters. (b) More detailed
results for the area in the box in (a). The experiments are conducted on synthetic data with n = 1000 nodes and r = 5 clusters with equal
size K = 200.

For comparison, we consider three alternative methods: (1) Single-Linkage clustering (SLINK) [38],
which is a hierarchical clustering method that merges the most similar clusters in each iteration. We use
the difference of neighbors, namely ‖Ai·−Aj·‖1, as the distance measure of nodes i and j, and terminate
when SLINK finds a clustering with r = 5 clusters. (2) A spectral clustering method [39], where we run
SLINK on the top r = 5 singular vectors of A. (3) The low-rank-plus-sparse approach [28, 22], followed
by the rounding scheme described in the last paragraph. Note the first two methods assume knowledge
of the number of clusters r, which is not available to our method.

For each q, we find the smallest p for which a method succeeds, and average over 20 trials. The results
are shown in Figure 1(a), where the area above each curves corresponds to the range of feasible (p, q) for
each method. It can been seen that our method subsumes all others, in that we succeed for a strictly larger
range of (p, q). Figure 1(b) shows more detailed results for sparse graphs (p ≤ 0.3, q ≤ 0.1), for which
SLINK and low-rank-plus-sparse approach completely fail, while our method significantly outperforms
the spectral method, the only alternative method that works in this regime.

VI. PROOF OF LEMMA 1
In this section we prove the monotone lemma. Set λ = 1

48
√
n

. Define Ω+ = {(i, j) : aij = 0, ãij = 1}
and Ω− = {(i, j) : aij = 1, ãij = 0}. Let Y 6= Ŷ be an arbitrary alternative feasible solution obeying
0 ≤ yij ≤ 1,∀i, j. By optimality of Ŷ to the original program, we havecA∑

aij=1

ŷij−cAc
∑
aij=0

ŷij

− 1

λ

∥∥∥Ŷ ∥∥∥
∗
>

cA∑
aij=1

yij−cAc
∑
aij=0

yij

− 1

λ
‖Y ‖∗ .

Next, by definition of Ã, Ω+ and Ω−, we havecA∑
ãij=1

ŷij−cAc
∑
ãij=0

ŷij

−
cA∑

aij=1

ŷij−cAc
∑
aij=0

ŷij

 =
∑

(i,j)∈Ω+

(cA + cAc);
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and cA ∑
aij=1

yij − cAc
∑
aij=0

yij

−
cA ∑

ãij=1

yij − cAc
∑
ãij=0

yij


=(cA + cAc)

∑
(i,j)∈Ω−

yij − (cA + cAc)
∑

(i,j)∈Ω+

yij

≥−
∑

(i,j)∈Ω+

(cA + cAc),

where we use 0 ≤ yij ≤ 1 for all (i, j) in the last inequality. Summing the L.H.S. and R.H.S. of the last
three display equations establishes thatcA∑

ãij=1

ŷij−cAc
∑
ãij=0

ŷij

− 1

λ

∥∥∥Ŷ ∥∥∥
∗
>

cA∑
ãij=1

yij−cAc
∑
ãij=0

yij

− 1

λ
‖Y ‖∗ .

Since Y is arbitrary, we conclude that Ŷ is the unique optimum of the modified program.

VII. PROOF OF THEOREM 1
We prove our main theorem in this section. The proof consists of three main steps, which we elaborate

below.

A. Step 1: Reduction to Homogeneous Edge Probabilities
We show that it suffices to assume that the in-cluster edge probability is uniformly p, and the across-

cluster edge probability is uniformly q. In the heterogeneous model, suppose an edge is placed between
nodes i and j with probability pij if they are in the same cluster, where pij ≥ p. This is equivalent to
the following two-step model: first flip a coin with head probability p, and add the edge if it is head;
if it is tail, then flip another coin and add the edge with probability pij−p

1−p . By the monotone property in
Lemma 1, we know that if our convex program succeeds on the graph generated in the first step, then it
also succeeds for the second step, because more in-cluster edges are added. A similar argument applies to
the across-cluster edges. Therefore, heterogeneous edge probabilities only make the probability of success
higher, and thus we only need to prove the homogeneous case.

B. Step 2: Optimality Condition
We need some additional notation. We denote the singular value decomposition of Y ∗ (notice Y ∗

is symmetric and positive definite) by U0Σ0U
>
0 . For any matrix M , we define PT (M) := U0U

>
0 M +

MU0U
>
0 − U0U

>
0 MU0U

>
0 . For a set Ω of matrix indices, let PΩ(M) be the matrix obtained by setting

the entries of M outside Ω to zero, and we use
∑

Ω as a shorthand of
∑

(i,j)∈Ω. Define the sets A :=

support(A) and R := support(Y ∗) = support(U0U
>
0 ). The true cluster matrix Y ∗ is an optimal solution

to the program (2)–(3) if

λcA
∑
A

(y∗ij − yij)− λcAc
∑
Ac

(y∗ij − yij)− (‖Y ∗‖∗ − ‖Y ‖∗) ≥ 0 (8)

for all feasible Y obeying (3). Suppose there is a matrix W that satisfies

‖W‖ ≤ 1, PT (W ) = 0. (9)
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The matrix U0U
>
0 + W is a subgradient of f(X) = ‖X‖∗ at X = Y ∗, so ‖Y ‖∗ − ‖Y ∗‖∗ ≥ 〈U0U

>
0 +

W,Y − Y ∗〉. Therefore, (8) is implied by

λcA
∑
A

(y∗ij − yij)− λcAc
∑
Ac

(y∗ij − yij) + 〈U0U
>
0 +W,Y − Y ∗〉 ≥ 0, ∀0 ≤ Y ≤ 1. (10)

The above inequality holds in particular for any feasible Y of the form Y = Y ∗ − eie>j with (i, j) ∈ R
or Y = Y ∗ + eie

>
j with (i, j) ∈ Rc. This leads to the following element-wise inequalities:

−λcAc − (U0U
>
0 +W )ij ≥ 0, ∀(i, j) ∈ R ∩ Ac,
−λcA + wij ≥ 0, ∀(i, j) ∈ Rc ∩ A,

λcA − (U0U
>
0 +W )ij ≥ 0, ∀(i, j) ∈ R ∩ A,
λcAc + wij ≥ 0, ∀(i, j) ∈ Rc ∩ Ac.

(11)

It is easy to see that these inequalities are actually equivalent to (10), so together with (9) they form a
sufficient condition for the optimality of Y ∗.

Finding a “dual certificate” W obeying the exact conditions (9) and (11) is difficult, and does not
guarantee uniqueness of the optimum. Instead, we consider an alternative sufficient condition that only
requires a W that approximately satisfies the exact conditions. This is done in Proposition 1 below (proved
in Section VII-D), which significantly simplifies the construction of W . Note that condition (b) in the
proposition is a relaxation of the equality in (9), whereas condition (c) tightens (11). Setting ε = 0 and
changing equalities to inequalities in the proposition recover the exact conditions.

Proposition 1. Y ∗ is the unique optimal solution to the program (2)–(3), if there exists a matrix W ∈
Rn×n and a number 0 < ε < 1 that satisfy the following conditions: (a) ‖W‖ ≤ 1, (b) ‖PT (W )‖∞ ≤
ε
2
λmin {cAc , cA}, and (c)

−(1 + ε)λcAc − (U0U
>
0 +W )ij = 0, ∀(i, j) ∈ R ∩ Ac,

−(1 + ε)λcA + wij = 0, ∀(i, j) ∈ Rc ∩ A,
(1− ε)λcA − (U0U

>
0 +W )ij ≥ 0, ∀(i, j) ∈ R ∩ A,

(1− ε)λcAc + wij ≥ 0, ∀(i, j) ∈ Rc ∩ Ac.

C. Step 3: Constructing W
We build a W that satisfies the conditions in Proposition 1 w.h.p. We use 1 to denote the all-one column

vector in Rn, so 11> is the all-one n × n matrix. Let E = {(i, i), i = 1, . . . , n} be the set of diagonal
entries. For an ε to be specified later, we define W = W1 +W2 +W3 +W4 with Wi given by

W1 =− PR∩Ac(U0U
>
0 ) +

1− p
p

PR∩A(U0U
>
0 ),

W2 =(1 + ε)λcAc

[
−PR∩Ac(11>) +

1− p
p

PR∩A(11>)

]
,

W3 =(1 + ε)λcA

[
P(Rc∩Ec)∩A(11>)− q

1− q
P(Rc∩Ec)∩Ac(11

>)

]
,

W4 =(1 + ε)λcAPRc(I),

where I is the identity matrix. We briefly explain the ideas behind the construction. Each of the matrices
W1, W2 and W3 is the sum of two terms. The first term is derived from the equalities in condition (c) in
Proposition 1. The second term is constructed in such a way that each Wi is a zero-mean random matrix
(due to the randomness in A), so it is likely to have small norms and satisfy conditions (a) and (b). The
matrix W4 accounts for the outlier nodes. In particular, it is a diagonal matrix with (W4)ii being non-zero
if and only if i ∈ V2
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The following proposition (proved in Section VII-E) shows that W indeed satisfies all the desired
conditions w.h.p., hence establishing Theorem 1.

Proposition 2. Under the conditions in Theorem 1, W constructed above satisfies the conditions (a)–(c)
in Proposition 1 w.h.p. with

ε :=
48√
t(1− t)

max


√
n

K
,

√
log4 n

K

 .

D. Proof of Proposition 1 (Optimality Condition)
Let PT⊥(W ) := W − PT (W ). Consider any feasible solution Y and let ∆ := Y − Y ∗. The difference

between the objective values of Y and Y ∗ satisfies

(∗) :=cA
∑
A

δij − cAc
∑
Ac

δij −
1

λ
‖Y ∗ + ∆‖∗ +

1

λ
‖Y ∗‖∗

≤cA
∑
A

δij − cAc
∑
Ac

δij −
1

λ

〈
U0U

>
0 + PT⊥(W ),∆

〉
=cA

∑
A

δij − cAc
∑
Ac

δij −
1

λ

〈
U0U

>
0 +W,∆

〉
+

1

λ
〈PTW,∆〉 ,

where in the inequality we use the fact that U0U
>
0 +PT⊥(W ) is a subgradient of ‖Y ‖∗ at Y ∗, a consequence

of condition (a) in the proposition and ‖PT⊥(W )‖ ≤ ‖W‖. We substitute condition (c) into the third term
in the R.H.S. of the last display equation to obtain

(∗) ≤ εcA
∑
R∩A

δij − εcAc
∑
Rc∩Ac

δij + εcAc
∑
R∩Ac

δij − εcA
∑
Rc∩A

δij +
1

λ
〈PTW,∆〉

≤ −εmin{cA, cAc}‖∆‖1 +
1

λ
〈PTW,∆〉 ,

where we use the fact that δij ≤ 0 for (i, j) ∈ R and δij ≥ 0 for (i, j) ∈ Rc since Y = Y ∗+∆ satisfies (3).
Applying condition (b) yields

(∗) ≤ −εmin {cAc , cA} ‖∆‖1 +
1

λ
‖PTW‖∞ ‖∆‖1 ≤ −

ε

2
min {cAc , cA} ‖∆‖1 .

The last R.H.S. is strictly negative whenever ∆ 6= 0. This proves that Y ∗ is the unique optimal solution.

E. Proof of Proposition 2
We show that W constructed in Section VII-C satisfies the conditions in Proposition 1 w.h.p. We need

two technical lemmas. First notice that the conditions (5) and (6) in Theorem 1 imply bounds on various
quantities.

Lemma 2. Under conditions (5) and (6) in Theorem 1, we have (1) p(1−q) ≥ t(1−t) ≥ cmax
{

n
K2 ,

log4 n
K

}
,

and (2) ε < 1
2
.

Proof. Since 1 > t > 0, we have t(1 − t) ≥ 1
2

min{t, 1 − t}. Under condition (5) on t, we further have
min {t, 1− t} ≥ 1

4
(p− q) and p(1− q) ≥ t(1− t). It then follows from condition (6) that

t(1− t) ≥ 1

8
(p− q) ≥ c′

√
t(1− t) max


√
n

K
,

√
log4 n

K

 ,
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which implies the inequalities in part (1) of the lemma. Part (2) follows directly from part (1) and the
definition of ε.

Due to the randomness of A, W1, W2 and W3 are symmetric random matrices with independent zero-
mean entries. The support and variance of their entries are bounded in the following lemma.

Lemma 3. The following holds under the conditions in Theorem 1.
1) For i = 1, 2, 3, the absolute values of the entries of Wi are bounded by Bi a.s. and their variance is

bounded by σ2
i , where

B1 =
1

pK
, σ2

1 =
1

pK2
,

B2 =
2

p
λcAc , σ2

2 =
4(1− t)

p
λ2c2
Ac ,

B3 =
2

1− q
λcA, σ2

3 =
4t

1− q
λ2c2
A.

2) We have σi ≥ cBi log2 n√
K

for i = 1, 2, 3.

Proof. The first part of the lemma follows from the definitions of the Wi’s, q ≤ t ≤ p and ε < 1
2

(Lemma 2). The second part follows from part (1) of Lemma 2.

We now proceed with the proof of Proposition 2, The proof has three sub-steps, corresponding to
checking the three conditions in Proposition 1.

(1) Bounding ‖W‖.
Recall that W1 is a random matrix with i.i.d. entries, and their absolute values and variance are bounded

in Lemma 3. We apply standard bounds on the spectral norm of random matrices (Lemma 4 in the
Appendix) to obtain w.h.p.

‖W1‖ ≤ 6
1

K

√
1

p

√
n ≤ 1

4
,

where the last inequality follows from p ≥ c n
K2 (cf. Lemma 2). In a similar manner, we obtain that w.h.p.

‖W2‖ ≤ 6 · 2
√

1− t
p

λcAc ·
√
n = 12

√
(1− t)
p
· 1

48

√
t

(1− t)n
·
√
n ≤ 1

4
,

where the last inequality follows from p ≥ t, and w.h.p.

‖W3‖ ≤ 6 · 2
√

t

1− q
λcA ·

√
n = 12

√
t

1− q
· 1

48

√
1− t
tn
·
√
n ≤ 1

4
,

where the last inequality follows from 1− t ≤ 1− q. Finally, since W4 = (1 + ε)λcAPRc(I) is a diagonal
matrix, we have

‖W4‖ ≤ (1 + ε)λcA ≤ 2 · 1

48

√
1− t
tn
≤ 1

4

since t ≥ c 1
n

(cf. Lemma 2). We conclude that ‖W‖ ≤
∑4

i=1 ‖Wi‖ ≤ 1.
(2) Bounding ‖PTW‖∞.
Define the sets Rm := {(i, j) : i, j in cluster m}, and recall that r is the number of clusters and

R := support(Y ∗) = ∪rm=1Rm. We have Y ∗ =
∑r

m=1 PRm(11>), and thus its singular vectors satisfies

U0U
>
0 =

r∑
m=1

1

km
PRm(11>).
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Therefore, for i = 1, 2, 3, each entry of the matrix U0U
>
0 Wi equals 1

km
times the sum of km independent

zero-mean random variables (which are the entries of Wi), whose absolute values and variance are bounded
in Lemma 3. We may use the standard Bernstein inequality (Lemma 5 in the Appendix) to bound each∥∥U0U

>
0 Wi

∥∥
∞.

For W1, we have∥∥U0U
>
0 W1

∥∥
∞ ≤

1

K
· c3

√
1

pK2

√
K log n = c3

1

K

√
log n

pK
≤ log2 n

242

√
1

Kn
,

where we use p ≥ c n
K2 in the last inequality (c.f. Lemma 2). Similarly, W2 satisfies∥∥U0U

>
0 W2

∥∥
∞ ≤

1

K
· c3

√
1− t
p

λcAc
√
K log n

=c3

√
(1− t) log n

pK

1

48

√
t

(1− t)n
≤ log2 n

242

√
1

Kn
,

where we use p ≥ t and log n being sufficiently large in the last inequality. The matrix W3 obeys∥∥U0U
>
0 W3

∥∥
∞ ≤

1

K
· c3

√
t

1− q
λcA

√
K log n

=c3

√
t log n

(1− q)K
1

48

√
1− t
tn
≤ log2 n

242

√
1

Kn
,

where we use 1 − q ≥ 1 − t and log n being sufficiently in the last inequality. Finally, since W4 is a
diagonal matrix supported on Rc and U0U

>
0 is supported on R, we have U0U

>
0 W4 = 0.

On the other hand, we have

λcAε ≥
1

48

√
1− t
tn
· 48

√
log4 n

Kt(1− t)
=

1

t

√
log4 n

Kn
≥ 1

24

√
log4 n

Kn

and

λcAcε ≥
1

48

√
t

(1− t)n
· 48

√
log4 n

Kt(1− t)
=

1

(1− t)

√
log4 n

Kn
≥ 1

24

√
log4 n

Kn
,

so 1
24
ελmin {cA, cAc} ≥ log2 n

242

√
1
Kn

. Combining with the previous bounds on
∥∥U0U

>
0 Wi

∥∥
∞, we obtain∥∥(U0U

>
0 Wi)

∥∥
∞ ≤

1
24
ελmin {cA, cAc} .

Now observe that since W and U0U
>
0 are both symmetric, we have WU0U

>
0 =

(
U0U

>
0 W

)> and thus∥∥WU0U
>
0

∥∥
∞ =

∥∥U0U
>
0 W

∥∥
∞. Furthermore, we have

U0U
>
0 WU0U

>
0 =U0U

>
0

r∑
m=1

1

km
PRm(11>),

which implies
∥∥U0U

>
0 WU0U

>
0

∥∥
∞ ≤

∥∥U0U
>
0 W

∥∥
∞ . It follows that

‖PTW‖∞ =
∥∥U0U

>
0 W +WU0U

>
0 − U0U

>
0 WU0U

>
0

∥∥
∞

≤
∥∥U0U

>
0 W

∥∥
∞ +

∥∥WU0U
>
0

∥∥
∞ +

∥∥U0U
>
0 WU0U

>
0

∥∥
∞

≤3
∥∥U0U

>
0 W

∥∥
∞ ≤ 3

4∑
i=1

∥∥U0U
>
0 Wi

∥∥
∞ .
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Using the bounds on
∥∥U0U

>
0 Wi

∥∥
∞ derived above, we obtain that ‖PTW‖∞ ≤ 12 · 1

24
ελmin {cA, cAc} =

1
2
ελmin {cA, cAc}.
(3) The two equalities in condition (c) in Proposition 1 hold by the definition of W . We now turn to

the inequalities in condition (c). Because 1− q ≥ 1− t and p ≤ 4t, we have 1−q
p
≥ 1

4
1−t
t

. It follows from
the conditions in Theorem 1 that

p− q
4
≥c
√
p(1−q) max

{√
n/K,

√
log4 n/K

}
≥8p(1−t) · 48√

t(1−t)
max

{√
n/K,

√
log4 n/K

}
= 8p(1−t)ε.

(12)

We thus have
p− t ≥ p−

(
3

4
p+

1

4
q

)
=
p− q

4
≥ 8p(1− t)ε.

One verifies that this implies (1 + ε)
√

t
1−t

1−p
p
≤ (1 − 2ε)

√
1−t
t

. Plugging in the values of cA and cAc

in (4) yields

(1 + ε)
cAc(1− p)

p
≤ (1− 2ε)cA,

Hence, for each (i, j) ∈ R ∩ A, we have

(U0U
>
0 +W )ij =

1

p
(U0U

>
0 )ij + (1 + ε)λcAc

1− p
p
≤ 1

p
(U0U

>
0 )ij + (1− 2ε)cA.

We also have

1

p
(U0U

>
0 )ij ≤

1

pK

(i)

≤ 48

K

√
n

t(1− t)
· 1

48

√
1− t
tn
≤ ε · λcA,

where (i) follows from p ≥ t. Combining the last two displays proves the first inequality in condition (c).
Similarly, we have

t− q ≥
(
p

4
+

3q

4

)
− q =

p− q
4

(ii)

≥ 8p(1− t)ε
(iii)

≥ 2t(1− q)ε,

where (ii) follows from (12) and (iii) follows from p ≥ t and 1 − t ≥ 1 − 3
4
p − 1

4
q ≥ 1

4
(1 − q). This

implies (1 + ε)
√

1−t
t

q
1−q ≤ (1− ε)

√
t

1−t . Therefore, for each (i, j) ∈ Rc ∩ Ac,

wij = −(1 + ε)
cAq

1− q
≥ −(1− ε)cAc ,

proving the second inequality in condition (c). This completes the proof of Proposition 2.

VIII. PROOF OF THEOREM 2
We use a standard information theoretic argument via Fano’s inequality. For simplicity we assume n1/K

and n2/K are both integers, and we use c1, c2 . . . to denote positive absolute constants. Let F be the set of
all possible ways of assigning n nodes into n1/K clusters of equal size K. When K = Θ(n1) = Θ(n2),
the cardinality of F can be bounded as

M := |F| = 1

(n1/K)!

(
n

K

)(
n−K
K

)
· · ·
(
n1 +K

K

)
≥ c2 · c

1
2
n

1

for some c1 > 1 and c2 > 0.
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Suppose the true cluster matrix Y ∗ is obtained uniformly at random from F , and the graph A is
generated from Y ∗ according to GSBM with uniform edge probabilities. We use PA|Y ∗ to denote the
distribution of A given Y ∗. Let Ŷ be any measurable function of A. The standard Fano’s inequality gives

sup
Y ∗∈F

P
[
Ŷ 6= Y ∗|Y ∗

]
≥ 1− I (A;Y ∗) + log 2

logM
≥ 1− I (A;Y ∗) + log 2

c3n

for n is sufficiently large. We now bound the mutual information I(A;Y ∗). Observe that

I(A;Y ∗) =H(A)−H(A|Y ∗) ≤
∑

(i,j):i>j

H(aij)−H(A|Y ∗)

=

(
n

2

)
H(a12)−

(
n

2

)
H(a12|Y ∗) =

(
n

2

)
I(a12;Y ∗),

where in the second equality we have used the symmetry under the uniform distribution of Y ∗ and the
conditional independence between a′ijs. By definition of the mutual information, we have

I(a12;Y ∗) = I(a12; y∗12) = Ey∗12 [D (P(a12|y∗12)‖P(a12))] .

We compute the divergence on the last RHS. Let α := P(y∗12 = 1) = (K−1)n1

n2 and γ := P(a11 = 1) =
αp+ (1− α)q. It follows that

Ey∗12 [D (P(a12|y12)‖P(a12))]

=
∑

y∈{0,1}

∑
a∈{0,1}

P(y∗12 = y)P(a12 = a|y∗12 = y) log
P(a12 = a|y∗12 = y)

P(a12 = a)

=αp log
p

γ
+ α(1−p) log

(1− p)
(1− γ)

+ (1−α)q log
q

γ
+ (1−α)(1−q) log

(1− q)
(1− γ)

≤αp
(
p

γ
−1

)
+α(1−p)

(
1−p
1−γ

−1

)
+(1−α)q

(
q

γ
−1

)
+(1−α)(1−q)

(
1−q
1−γ

−1

)
=
α(1− α)(p− q)2

γ(1− γ)
≤ c4

(p− q)2

p(1− q)
,

where in the last inequality we use γ ≥ αp, 1 − γ ≥ (1 − α)(1 − q) and α, 1 − α = Θ(1). Combining
pieces, we obtain

sup
Y ∈F

P
[
Ŷ 6= Y |Y

]
≥ 1−

c5
(p−q)2n2

p(1−q) + log 2

c3n
.

For the last R.H.S. to be less than 1
4
, we need (p−q)2

p(1−q) ≥ c6
1
n

. This completes the proof of the theorem.

IX. PROOF OF THEOREM 3
Let λi be the i-th eigenvalue of the matrix E[A] (couting multiplicity). Observe that the matrix Ā :=

A−EA is a random symmetric matrix with independent zero-mean entries, each of which is bounded in
absolute value by 1 and has variance bounded by p(1− p)∨ q(1− q) ≤ p(1− q). Under the condition of
Theorem 3, we may apply Lemma 4 to obtain

∥∥Ā∥∥ ≤ 4
√
p(1− q)n w.h.p. It then follows from Weyl’s

inequality [40] that w.h.p.

max
i

{∣∣∣λ̂i − λi∣∣∣} ≤ ‖A− EA‖ =
∥∥Ā∥∥ ≤ 4

√
p(1− q)n. (13)

In the sequel, we assume we are on the event that (13) holds.
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a) Estimation of r : Recall that λ1 = K(p − q) + nq + (1 − p), λ2, . . . , λr = K(p − q) + (1 − p),
and λr+1, . . . , λn = 1− p. The inequality (13) implies that for some universal constant c1,

• λ̂1 − λ̂2 ≤ λ1 − λ2 +
∣∣∣λ̂1 − λ1

∣∣∣+
∣∣∣λ̂2 − λ2

∣∣∣ ≤ nq + c1

√
p(1− q)n;

• λ̂i− λ̂i+1 ≤ λi−λi+1 +
∣∣∣λ̂i − λi∣∣∣+ ∣∣∣λ̂i+1 − λi+1

∣∣∣ ≤ c1

√
p(1− q)n for i = 2, . . . r− 1 and i ≥ r+ 1;

• λ̂r − λ̂r+1 ≥ λr − λr+1 −
∣∣∣λ̂r − λr∣∣∣− ∣∣∣λ̂r+1 − λr+1

∣∣∣ ≥ K(p− q)− c1

√
p(1− q)n.

Under the condition of Theorem 3, we have K(p−q) ≥ c2

√
p(1− q)n for some constant c2. This implies

λ̂r − λ̂r+1 >
K(p−q)

2
> λ̂i − λ̂i+1 for all i > 1 and i 6= r. This guarantees r̂ = r and thus K̂ = K.

Estimation of p and q: By (13), the estimation error of q̂ satisfies

|q̂ − q| =

∣∣∣∣∣ λ̂1 − λ1

n
− λ̂2 − λ2

n

∣∣∣∣∣ ≤ |λ̂1 − λ1|+ |λ̂2 − λ2|
n

≤ c3

√
p(1− q)n
K

.

Similarly, we have

|p̂− p| =

∣∣∣∣∣K̂λ̂1 + (n− K̂)λ̂2 − n
n(K̂ − 1)

− Kλ1 + (n−K)λ2 − n
n(K − 1)

∣∣∣∣∣
=

∣∣∣∣∣K(λ̂1 − λ1) + (n−K)(λ̂2 − λ2)

n(K − 1)

∣∣∣∣∣ ≤ c3

√
p(1− q)n
K

.

b) Choosing t: Using the above bounds on p̂ and q̂, we obtain

t =
p+ q

2
+
p̂− p+ q̂ − q

2
≤ p+ q

2
+ c4

√
p(1− q)n
K

≤p+ q

2
+
p− q

4
=

3

4
p+

1

4
q,

where in the last inequality we use the assumption p−q
4
≥ c4

√
p(1−q)
K

in the theorem. This proves one side
of inequality for t, and the other side is proved in a similar way.

X. CONCLUSION

This work is motivated by clustering large-scale networks such as modern online social networks, where
the graphs are often highly noisy and has heterogeneous and non-random structures. We considered a
natural and versatile model, namely the semi-random Generalized Stochastic Blockmodel, for clustered
random graphs. This model recovers many classical generative models for graph clustering. We presented
a convex optimization formulation, essentially a convexification of the maximum likelihood estimator. Our
theoretic analysis shows that this method is guaranteed to recover the correct clusters under a wide range
of problem parameters of the problem. In fact, our method outperforms, i.e., succeeds under less restrictive
conditions, every existing method in this setting. Simulation studies also validates the effectiveness of the
proposed method. Immediate goals for future work include faster algorithm implementations, as well as
developing effective post-processing schemes (e.g., rounding) when the obtained solution is not an exact
cluster matrix.
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APPENDIX

In this section, we record two technical lemmas that are needed in the proofs of our theoretical results.
The first lemma is a standard bound on the spectral norm of a random symmetric matrix.

Lemma 4. Suppose Y is a symmetric n × n matrix, where Yij , 1 ≤ i, j ≤ n are independent random
variables, each of which has mean 0 and variance at most σ2 and is bounded in absolute value by B. If
σ ≥ c1

B log2 n√
n

for some absolute constant c1 > 0, then with probability at least 1− n−10,

‖Y ‖ ≤ 4σ
√
n.

Proof. Except for Y being symmetric, the proof is the same that of Theorem 3.1 in [41].

The second lemma is the standard Bernstein inequality for the sum of independent random variables.

Lemma 5. ([42], Proposition 5.16) Let Y1, . . . , YN be independent random variables, each of which is
bounded in absolute value by B a.s. and has variance bounded by σ2. There exist universal positive
constants c0, c1, c2 independent of σ, B, N and n such that if σ ≥ B

√
logn
N

, then we have∣∣∣∣∣
N∑
i=1

Yi − E

[
N∑
i=1

Yi

]∣∣∣∣∣ ≤ c0σ
√
N log n

with probability at least 1− c1n
−c2 .


